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Abstract

In this thesis we consider the multivariate tail conditional measures for
multivariate Pareo type II distribution. Firstly, we derive an explicit closed-
form expression for the multivariate tail conditional expectation (MTCE) for
the multivariate Parto type II distribution. Secondly, we consider a multivari-
ate tail covariance (MTCov) measure, which is a matrix- valued risk measure
designed to explore the tail dispersion of multivariate loss distribution. The
MTCov which is also defined for the set of different quantile levels, allows
us to investigate more deeply the tail of multivariate distributions, since it
focuses on the variance-covariance dependence structure of dependent risks.
We also consider the multivariate tail correlation matrix (MTCorr), in order
to get the correlation between any two risks. The results are illustrated with
examples of multivariate Pareto.
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Chapter 1

Introduction

Insurance companies set aside amount of capital from which they use as
a reserve to ensure their ability to meet all future claims. The subject of
determination of these amounts has been of active interest to researchers,
regulators of financial products and financial institutions themselves.

Suppose that an insurance company faces the risk of losing a quantity
X for some fixed period of time. This may refer to the total claims for the
insurance company or to the total loss in a portfolio of investment for an
individual or institution. We denote it’s distribution function by Fx(z) =
P(X < ), and it’s survival function by Fx(x) = P(X > z).

The concept of value at risk (VaR) has become the standard risk measure
used to evaluate risk. The VaR is the amount of capital required to ensure,
with high degree of certainty, that the enterprise does not become technically
insolvent.

The need for VaR from the past few decades tremendous volatility in ex-
change rates, interest rates, and commodity prices and it’s proliferation of
derivative instruments for managing the risks of changes in market rates and
prices. Increased trading of cash instruments and securities and the growth
of financing opportunities accompanied the proliferation of derivatives. As a
result, many companies have portfolios that include large numbers of (some-
times complex) cash and derivative instruments. Moreover, the magnitudes
of the risks in companies portfolios often are not obvious. The result is in-
creasing demand for a portfolio-level quantitative measure of market risk.
VaR is single, summary statistical measure of possible portfolio losses.

The promotion of VaR has prompted the study of risk measures by nu-
merous authors. Over recent years the so-called tail conditional expectation
(TCE) or TailVaR risk measure has become more and more popular among
actuaries, because of several attractive properties. In particular, Artzner et
al. (1999) demonstrated that the tail conditional expectation satisfies all
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requirements for a coherent risk measure.When compared to the traditional
value-at-risk (VAR) measure, the tail conditional expectation provides a more
conservative measure of risk for the same level of degree of confidence (1-q).
This risk measure is the main subject of this thesis.

Tail conditional expectation of X is defined as
TCE,(X)=E(X|X > z,), (1.1)

and it can be interpreted as the average of worse losses as it gives the mean
amount of the tail of the distribution. This tail is usually based on the g¢-
th quantile, the value at risk (VaR,(X)) of the loss distribution with the
property

Fx(zg) =1—gq,

where 0 < ¢ < 1.

Tail conditional expectation (TCE) is regarded as one of the most im-

portant risk measures, which is incorporated into Basel II (see Fu and Jang.
(2008)) and Solvency II (see Devolder and Lebegue. (2016)). The TCE risk
measure was investigated by many authors and the following is a partial list
of related references (Artzner (1999) , Panjer (2002), Landsman and Valdez
(2003) , Landsman and Valdez (2006) , Cai and Haijun (2005) , Cai et al.
(2015), Chen et al. (2014) , Katsuki and Matsumoto , Klugman et al. (2012),
Ogryczak (2014)). The TCE like other risk measures, is generally defined as
a mapping from a set of values of random variables to the real line, and
its main goal is to quantify a financial risk by evaluating expected extreme
losses.
TCE is a conditional expectation and hence, does not include information
about deviation of the risk from it’s expectation in the upper tail. In order to
overcome this problem, Furman and Landsman (2006) introduced new risk
measure, the conditional tail variance (TV). Tail variance is a measure of
variability on the right tail X > z,, and it is merely the conditional variance
of the risk X. The tail variance is defined as

TV, (X) = Var(X|X > z,) = E(X — TCE,(X))*X > x,). (1.2)

In addition, in this research study we consider also the multivariate tail con-
ditional expectation (MTCE) risk measure for multivariate Pareto type II
distribution. The motivation behind taking the multivariate TCE comes
from the fact that unlike the traditional tail conditional expectation, the
MTCE measure takes into account the covariation between dependent risks,
which is the case when we are dealing with real data of losses.
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The multivariate tail conditional expectation (MTCE) was introduced in
Landsman et al.,2016. In 2018 the MTCE was introduced in another form,
which allowing for quantile levels to obtain the different values corresponding
to each risk (Landsman, Makov and Shushi, 2018).

Define X = (X1, ..., X,,)" an n x 1 vector of random risks that can be depen-
dent on each other. The MTCE of vector X is defined as

MTCE(X) = E(X|X > VaRy(X)) = E(X|X1 > VaRy, (X1), ... Xn > VaR,, (X,)),
q= <q17 q2; - qn) € (07 1)n

Where,
VaRy(X) is n x 1 vector VaRy(X) = (VaR, (X1),...,VaR, (X,))T.

The MTCE multivariate risk measure has several advantages comparing
with TCE risk:
(1) It provides the expectation of the elements of collective of risks-business
lines, when all business lines exceed the specified VaR-level threshold.
(2) The calculation of the proposed measure is relatively simpler than that
of the set risk measures and can be derived explicitly, important for actuarial
users.
(3) MTCE is the natural extension of the classical TCE to the multivariate
case. At the same time it takes into account the covariance structure of col-
lective of risk sunder consideration.
The MTCE risk measure has many important properties, see details in sub-
section 3.2 .
Following the MTCE risk measure, we will introduce the multivariate tail
covariance (MTCov) measure, which is a matrix-valued risk measure de-
signed to explore the tail dispersion of multivariate loss distributions (Lands-
man.Z, Makov.U, Shushi.T - Insurance: Mathematics and Economics, 2018).
The MTCov is the second multivariate tail conditional moment around the
MTCE.
The multivariate tail covariance given X > VaRq(X) is defined by

MTCovg(X) = E((X — MTCE4(X))(X — MTCE(X))"|X > VaRy(X)).
(1.3)

The MTCov risk measure has the following properties :

1. For any nx 1 random vector of risks X and positive constant A\, we

3
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have

MTCovq(AX) = X>MTCovg(X).

2. For any X and any vector of constants a € R"
MTCovy(X 4+ o) = MTCovy(X).

This means that for a fixed amount of known loss « the dispersion of
the total risk X+« is the same as the dispersion.

3. If the vector of risks X has independent components, then

MTCovg(X) = diag(TV,, (X1), TV, (Xs), ... TV, (X))

From the MTCov we can construct the multivariate tail correlation matrix,
which defined as
MTCovg(X),

MTCorrg(X) = )
orTa(X ) (\/MTCovq(X)ii\/MTCovq(X)kk ’

Each element in the MTCorr matrix gives the value of the correlation coef-
ficient between any two risks X and X;, and is defined by

MTCovg(X),

< 1.
\/MTOOUq(X)” \/MTOOUq(X)kk

—1 < pi =

In addition, we found expressions for the different risk measures: MTCE,
MTCov and MTCorr, for multivariate Pareto type II distribution .

Pareto type II distribution, is a heavy-tail probability distribution used in
business, economics, actuarial science, queueing theory and internet traffic
modeling (Landsman.Z, Makov.U, Shushi.T - Insurance: Mathematics and
Economics, 2018).

Furthermore, multivariate Pareto type II distribution is defined by shape
and scale parameters which are given by a and o=(01, 09, ...,0,)7, respec-
tively. Let X = (X1, ..., X,,)T be an n-dimensional multivariate Pareto type
IT distribution, the survival function is given by:

Fx(x) = (1 +Z"j—j>-a,

where x = (z1,...,2,)". It is known that the marginal distribution of X;,
j=1,...,n follows an univariate type II Pareto distribution with parameters «

4
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and o;.
The density function for multivariate Pareto type II distribution is given by

) = (1))
_ ala+ 1)(0;;22?....;7(104 +n— 1)(1 N i f_j)_a_n-

We got that the multivariate tail conditional expectation (MTCE) for mul-
tivariate Pareto type II distribution is given by

VaR, (X;
MTCE,(X) = VaRy(X +u1+z ¢ (1.4)

where,

M= (/J’lﬂ M2, ..ny :u’n)Ta
VaRy(X) = (VaR,, (X)), VaRy,(Xa), ..., VaRy, (X))T.

In addition, the multivariate tail covariance matrix (MTCov) for multivariate
Pareto type II distribution is given by

(a—lo)g?a—% (a (17)12?(7& 2)
a—01202a—2) T (a—(17)2;‘(7¢;<—2)
MTCovg(X) =V x | 11 _ . , (1.5)
0'1;7n . 0-12.10‘
| (a—1)2(a—2) (a—1)2(a—2) ]
where,
VaR, (z;
V — (1 + ‘I]( .7) )2.
— 0
7j=1

Furthermore, we obtained that the multivariate tail correlation matrix for
multivariate Pareto type II distribution is defined as

1 L .01
MTCorr= |[: .. @ f. (1.6)
o @ 1
5
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The multivariate Pareto type II has a crucial disadvantage: any univariate
marginal distribution has the same shape parameter, which means that they
have the same distribution up to a scaling parameter. However, it is difficult
to believe that all risk components of some system have the same rate of
decrease of the tail distribution for large risks. Moreover, the dependence
structure of multivariate Pareto is quite poor, because it allows only equal
correlations for each couple of risks and the independent univariate Pareto
marginals do not belong to the multivariate family.

Chiragiev and Landsman suggested two new multivariate versions of Pareto
distribution, whose univariate marginals are Pareto, but with different shape
parameters. They also have a lucratively richer dependence structure, i.e., a
flexible one.

The first model, which is called Multivariate Flexible Pareto type I (MFP(I)),
is the distribution where the power parameters of marginals do not depend
on the order of the components included in the model. For the second one,
called Multivariate Flexible Pareto type II (MFP(II)), the power parameters
are already dependent on the order of their marginals. Therefore, the first
model might be considered more attractive; for the second, some important
dependence attributes can be calculated in a simpler form. In our thesis we
work on the second type of Multivariate Flexible Pareto distribution.

The survival function of Multivariate Flexible Pareto type II distribution is
given by

Fx(x,ov)=[[a+Y z—j)%,

=1 Jj=t

and we write X ~ M FP(I]),(o,v), where v = (14, ..., 1), with

i
v; = E Vi 1=1,2,...,n.
=1

In our research study, we also tried to find the same risk measures: MTCE,
MTCov, MTCorr, for multivariate flexible Pareto type II, in order to see if a
different result would be obtained, that is, whether the correlation is different
between any two risks.

This thesis is organized as follows, chapter 2 discusses the VaR, TCE
and TV for univariate Pareto type II distribution. Chapter 3 deals with the
MTCE, MTCov and MTCorr for multivariate Pareto type II distribution.
Furthermore, this chapter deals the capital allocation for multivariate Pareto
type II distribution.

www.manaraa.com



After finding expressions for the different risk measures: TCE, TV, MTCE,
MTCov and MTCorr, for Pareto distribution type II, we showed that the
correlation between any two risks is the same and equal to %, regardless of
which particular two risks are involved. This unrealistic result drew us to
express the same risk measures for another distribution called ”Multivariate
Flexible Pareto”. Thus, in chapter 4 we discussed the TCE and MTCE for
Multivariate Flexible Pareto type II distribution.
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Chapter 2

Tail risk measures for
univariate Pareto type 11
distribution

2.1 Pareto type II distribution

Pareto type II distribution, is a heavy-tail probability distribution used in
business, economics, actuarial science, queuing theory and Internet traffic
modeling. It is named after K. S. Lomax. Pareto type II distribution support
begins at zero with shape and scale parameters a and o > 0, respectively.
The density function is given by:

a Y. (o
fr(y)=—(1+=)" y >0
o o

The survival function is given by:

Fly) = (1+ g)‘“, y > 0.

The raw moments of interest are given by

a1 (Y) = ail,oz> 1
202
Y) = 2
042( ) (&-1)(&—2)7a>

or, generally, for ke Z* and o > k,
INa—k)

ap(Y)=T(k+1) o)
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The variance is given by

oo

pa(Y) = (04—1)2(a—2)’a>2'

2.2 VaR and TCE for univarite pareto type
II distribution

Consider a loss random variable X whose distributed Pareto type II,
X ~ ParetoV(a, o), with shape and scale parameters « and o > 0, respec-
tively, the density function is given by

«

Fe(@) =21+ g)*a“), x> 0. (2.1)

g

The survival function is given by

Fy(z) = (1+ g)—a, x> 0. (2.2)

The concept of value-at-risk (VaR) has become the standard risk measure
used to evaluate risks. The VaR is the amount of capital is required to be
ensured, with high degree of certainty, that the enterprise does not become
technically insolvent.

The promotion of VaR has prompted the study of risk measures by nu-
merous authors (see Wang (1996,1997), Wirch and Hardy (1999)). Over
recent years the so-called tail conditional expectation (TCE) or TailVaR risk
measure has become more and more popular among actuaries , because of
several attractive properties. This risk measure is one of the main subjects
we dealt them in this thesis.

The tail conditional expectation (TCE) is defined by
f;o xfx(x)dx
Fx(x)

and is interpreted as the expected worse losses. Given the loss will exceed
a particular value z,, generally referred to as the g-th quantile with

TCE,(z) = BE(X|X > z,) = , (2.3)

FX($Q):1_Q7
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the TCE which defined in eq. gives the expected loss that can poten-
tially be experienced. This index has been initially recommended by Artzner
et al. (1999) to measure both market and nonmarket risks, presumably for
a portfolio of investments. It gives a measure of a right-tail risk, one with
which actuaries are very familiar because insurance contracts typically pos-
sess exposures subject to ”low-frequency but large-losses” as pointed out by

Wang (1998).

Theorem 2.2.1. Let X ~ ParetoM)(a, o) the tail conditional expectation
(TCE) can be defined by

TC’Eq(:U):xq(ail)-i-ail. (2.4)

Proof. For Pareto distribution the survival function at z, (z, is the g-th
quantile) is given by

— Ty _qo
Fx(ag) = (14 2) =14,

We have to go back to the equation( , and concentrate on calculating the
meter by using integration by parts.

| atst@in = maFxlols - [ ~Fx(on

q

pay attention, by using Lopital’s rule we get that

lim Fx(r) = 0.

T—00

Therefore,

pﬂiyumg-:AW—FX@ym::%qu04ilm_x@g¢z

=x,Fx(z,) + (1+ ;)_adaﬁ
Z —a+1100
= Fx(g) + =2 (1 2y
— Tg\_qo
= 4, Fxlag) - =2 (1+ 24y
W x
=2(1=q) = 71+ )1+
10
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Finally,

(1 —q) + ;51— q)(1+ ) z, & o
Furthermore,

Fx(z)=1-q=(1+-")"

1 T

1—¢q) =1+

(1—4q) +—

Then,

ry=0((1—¢)7% —1). (2.5)
O

11
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2.3 Tail variance for univariate Pareto type
II distribution

TCE is a conditional expectation and does not include information about
deviation of the risk from its expectation in the upper tail. In order to over-
come this problem, Furman and Landsman (2006) introduced two new risk
measures, the (Conditional) tail variance and the (Conditional) tail variance
Premium. Tail variance is a measure of variability on the right tail X > z,,
and it is merely the conditional variance of the risk X. The tail variance is
defined by

TV,(X) = Var(X|X > z,) = B(X = TCE,(X))?|X > z,).  (2.6)

In this section we expressed the tail variance (TV) of univariate Pareto dis-
tribution.

Theorem 2.3.1. Let X ~ Pareto(l)(a, o), with shape and scale parameters
a and o > 0, respectively . The tail variance TV,(X) is given by:

2

TViX) = g0 (2.7)
_ ao” (1+ Loy, (2.8)

(a—1)%(a—2) o

Proof.

TV,(X) = Var(X|X > z,) = E(X — TCE,(X))?|X > z,)
= B(X?|X > 1) — B*(X|X > ,).

By using Theorem [2.2.1] , we get
E(X|X > 2,) = (TCE,(X))* = (2, + ——=(1+ =))*.

Thus, we only need to express E(X?X > z,)

[ fx(x)de [ 2% fx(z)dx
2 _ Jxq _ JZq
BOCIX > ) = e = S

12
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Denote by k the meter of the equation above, then

k= /OO 2 fx (x)de = [—2*Fx (2)]30 4 2 /OO aFx(v)de = 2L Fx(x4) + 2 /00 (14 g)—adx

q q q
by using Lopital’s rule, we get that

2

lim —2*Fx(z) = lim =0, in condition a > 2.

T—00 T—00 (]_ —+ %)a

Denote by k’ the integral in the second part of k

o T o T o e T
kl — 1 el —ad — 1 “\—a+ljco / 1 d —a+1d
[y = e T D - T [ Dy

2

0Zq Lg\—at1 o L\ —a+2700
= 14 24 — 142
a1t Cotcatytts) Tk
2
0%q Lg\—at1 Lgy\—a+2
= 14+ — 14—
a—l( +cr) +(a—1)(a—2)( +0)
Thus,
kz/oox2fx(x)dx=x2(1—q)+ 2000 p Tayar 27 (g Tayeane
vq ? a—1 o (o —1)(ax — 2) o
Thus, it follows that
TV, (X) = E(X?*X > z,) — E*(X|X > z,)
x
S — 1+ =2))2
o? x 2 1
= 1 4+ 29)2 _
—1( U)(a—Z a—l)
2
ao
BCEECET
Where,
zg=o((1- Q)_al —1)
U

13
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Chapter 3

Multivariate Tail risk measures
of multivariate Pareto
distribution

3.1 Multivariate Pareto type II distribution

The Pareto distribution was introduced by Pareto (1897) as a model for the
distribution income. Arnold (1983) proposed four generalized multivariate
Pareto distributions denoted M P, (1), ..., M P,y (IV'), the first three being
special cases of the fourth one. Recently, Yeh (2000, 2004) studied some
properties and inference for all four forms, mentioning that the generalized
multivariate Pareto distribution is expected to fit the upper tail of some mul-
tivariate continuous income data and socio-economic multivariate variables,
while, in particular, the multivariate Pareto distribution of the second kind
is suited in reliability for its truncation invariance property. Originated in
extreme value theory, the Pareto distribution is also an important ingredient
of many risk management problems related to insurance, reinsurance and
finance, see e.g. Embrechts et al. (1999). Widely used in insurance to model
univariate heavy-tailed claims, the Pareto distribution could also be an in-
teresting alternative for multivariate losses. Therefore, a multivariate Pareto
distribution may be used to analyze a whole system of Pareto distributed
business lines, e.g. for evaluation of aggregate losses, for risk capital analysis
and allocation, for portfolio optimization etc.

Multivariate Pareto type II distribution considered by Shape and scale pa-
rameters are given by « and o=(0y,0,...,0,)7, respectively. Let X =
(X1, ..., X,,)T be an n-dimensional multivariate Pareto type II distribution,

14
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the survival function is given by

where x = (21, ...,2,)". It is known that the marginal distribution of X;,
j=1,...,n follows an univariate type II Pareto distribution with parameters «
and 0.

Furthermore, the dependence structure of the marginals is characterized by
parameter «; that is the correlation between X; and X, for ¢ # j is given
by é

15
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3.2 MTCE for Multivariate Pareto distribu-
tion

The MTCE (multivariate tail conditional expectation) risk measure takes
into account the covariation between dependent risks, which is the case when
we are dealing with real data of losses.
Where X = (X1, Xy, ..., X,,)T is an n x 1 vector of risks whose cumulative dis-
tribution function (cdf) and tail function are denoted by Fx(x) and Fx(x),
respectively. The MTCE is defined by

MTCE4(X) = E(X|X > VaRy(X))

3.2.1 Main properties of the MTCE measure
The MTCE risk measure has the following properties:

1. Positive Homogeneity: For any nx1 random vector of risks X and

positive constant A, we have
MTCE,(AX) = \MTCE,(X).

2. Translation Invariance:For any nx1 random vector of risks X and
any vector of constants @ € R"

MTCE,(X+ a) = MTCE,(X) + a.

3. Independence of risks:If the vector of risks X has independent com-
ponents, then MTCE,(X) = TCE,(X).

4. Monotonicity: Suppose Y, X are n x 1 random vectors of risks and
Y> X.Then: MTCE,(Y —X) > 0, where 0 is vector of n zeros.

5. Semi-sub additivity for elliptical distributions: Suppose X=(XT, X])T
is 2n x 1 elliptically distributed vector , and X;=(X1, ..., X,,)7,
Xy = (Xpy1, ..., Xo,)T are is partition.
Then, MTCE,(X,, X2)<MTCE,(X), + MTCE,(X),.
Here MTCE,(X); is the vector of the n elements of MTCE,(X) and
MTCE,(X), is the vector of it’s last n elements. The implication of this
inequality is that the combined risks, given that X; > VaR,(X;)and

16
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Xy > VaR,(X3) , is less risky than treating the risk separately , im-
plying a clear gain from diversification.In the case where X; and X,
are independent the semi-sub-additivity reduces to sub-additivity since
MTCE,(X);=MTCE,(X;) and MTCE,(X),=MTCE,(X,).

17
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3.3 MTCE of bivariate Pareto type II distri-
bution

In this section we will express the multivariate tail conditional expectation
of bivariate pareto type II distribution.

Lemma 3.3.1. Let X = (X1, X5)" ~ M Pareto® (o, o) with survival func-
tion denoted by Fx(x; o, 0) , o = (01,02) , the multivariate tail conditional
expectation can be expressed by:

MTCE,(X) = E(X|X > VaRy (X)) = VaRy(X) + p(1 + i: M).

o
i=1 v

(3.1)

Here VaRy(X) is 2x 1 vector, VaR(X) = (VaR, (X1), VaR,(X2))", and
VaRy, (X;) = x4, the value at risk of X; under the q;-th quantile,
qj € (0,1), j=1,2. Where ¢= (q1,q2)" .

Proof.
MTCE.X) = E(X|X > VaRq(X))
= E(X|X, > VaR, (X1),Xo > VaR,(Xs)), 0<q,q2<1
[ wix(w)de
FX(wq) ‘

The survival function is given by:

where,

fx(VaRq(X)) _ (1 + VaR(h (Xl) + VG’R%(X?))—a.

01 02

The density function is given by the following formula

dQF)((.’B)
dxleCQ '

fx(x) = (-1)*

18

www.manharaa.com



Firstly, we will present the development of the density function

Fx(a)=(1+22 422

g1 02
d — - T1 X9
_F - _ 1 L Tiy—a—1
diL'l (m) o1 ( +0’1 +0’2)
- —a(—a—1 T
z) = ( )1_|__1_|__2)—a—2
dilild.’L‘Q 0109 g1 09
_oatl),m 22)-a-
0102 g1 02

So, if X ~ M Pareto®(a, o) the density function is equal to

frla) = 20D g D Ty

0102 01 02

The MTCE4(X) can be calculated by the following formula

-, Tfx(x)dz
MTCE.(X) = J q__ . (3.2)
Fx(xq)
We will focus on calculating the meter in eq(3.2)
denote [ = / 21 fx (@) de.
Tq

Then,

o0 00 1

I:/ :Elfx(m)dac :/ mlw(l + ﬂ + ﬁ)—a_gdx
Zq VaRq(X) 0102 o1 09
o0 1 0o
VaRe (Xa) - 7102 VaRq, (X1) g1 02

we will solve the internal integral above by using integration by parts method,
thus

S /oo (a(a + 1) ([331 01 (1 + il 4 ﬂ)(—a—l)]oo

VaRg,(X2) 0102 —a—1 o1 09 VaRg, (X1)
o e T T
- / (1+ =+ 2y day))day
—Q = 1 Vaqu(Xl) 0-1 02
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Let us notice that:

01

lim (1+ e ﬂ)_‘"_1 = 0.
w100  —a — 1 o1 09

Therefore,

I :/ M(Vaqu(Xl)ao-l (1 + Va’R(h(Xl) + $2)_a_1

VaRg,(X2) 0102

~ala+1) /°° VaRy, (X1)oy

0102

VaRg, (X2) a+1 o1 o
o? VaR, (X x

b0 gy 0 (X1) L

ala+1) o1 P’

VaR
= 20D (v, () —272 Pa | 2

0109 —Oé(Od+ 1)( g1
2
0102 VaRy (X1) L2\ _at1700
+a(a+1)(_a+1)([( + o1 + 0_2) ]Vaqu(Xz))

s )" Vary, (x2)

VaR
_ Oé(Od + 1) (Vaqu (Xl) 0109 (1 n a q1(X1) n Vaqu(XQ)

0109 ala+1) oy o )
2
0109 VaR, (X1)  VaRg,(Xs), _aiq
i) T T T )

= VaR, (X1)(1+ VaRg, (X1) i Vaqu(XZ))—a+ 01 (1+ VaR, (Xy) . VaR,,(Xs)

)—a+1
o1 02 a—1 o1 02 7
note that,
lim 102V aR, (X;) 1+ VaRy, (xy) n ﬁ)_a —0
To—00 —O[(Oé —+ 1) 01 (op)
olo, VaR, (X1) o9
li 1 q1 Tay—a+l 0.
xgl—r>noo a(a+1)(—a+1)( o1 +0'2)
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We conclude that:

f;: 71 fx (x)dx

_ Vaqu(Xl)(1—|— VaR;ll(Xl) + VaRZ.Z(X2))_a+%(1+ VaRle(Xﬂ + VaRZZ(Xg))_OH_l

(14 Lefulf) | VeRu(h))

g1 g9

01

VaR, (X7) n VaR,,(X2) )

g1 09

=VaR, (X1) + 1(1 +

Denote by II the following integral,

11 = / " afx(@)dz,

q

thus,

> 1
1= / G P B I

VaRq(X) 0102 01 02
(o] 1 o
VaRg, (X1) 9102 VaRg,(X2) o1 09

ala+1) [ 02 Tl T2\ _a- 1100
- —(/ ([22 (I+—+-) 1]VaRq2(X2)

0109 VaRg, (X1) —a—1 o1 09
o
02 X1 Ty, _
- 1/ (1+ =2+ 2y dgy)day)
—@— L JVaR,,(x,) o1 03

by [~ VaR,, (X
- )/ VaRg,(Xs) (:-21(1"'&"' oBe(Xa) 2))_a_1

0109 VaRg, (X1) (% 01 09
2
93 Ty T2 _
- &« 1 i i oo d
+ —a(a+1) [+ o1 0-2) ]V“qu(Xz) 21
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1 o0 X
= M/ VaRqQ(Xg) 92 (1 + ﬂ + Va’RlD( 2))—04—1
7102 VaRg, (X1) a+1 o1 09
2
& z1 | VaRe,(X2),
2 (1+== d
+a(o¢+1)( +a'1+ o =) “dx,
ala+1) 0109 r1  VaR,(Xs), _
- Xo)(1+ 224 = g0
0109 ([—Oé(a i 1)VaRq2( 2)( + o1 + - ) ]Vaqu(Xl)
2
0301 v VaR,(X2) _oiiieo
14 =4 TRV
+O!(Oj + 1)(—04 + ].) [( + 01 + 09 ) ]Vaqu(Xl))

:a(a+1)( 0102 VaR,, (X,)(1+

VCLqu (Xl) + VaRQz (XQ) )—a

0102 a(a+1) 01 g2
N o301 (1+ VaR, (X1) N VaRq2(X2))_a+1)
afa+1)(a—1) o1 09
VaR, (X VaR,, (X VaR, (X VaR,, (X
:VaRq2(X2)(1+ a q1( 1)+ a QZ( 2))—04_1_ 02 (1_|_ a 111( 1)+ a Q2( 2))—a+1
01 09 a—1 o1 oD
So, we get
f:jngx(w)da:
Vaqu(Xg)(l-i- VaR:;Tll(Xl) + VaRZQQ(X2))_a+%(1+ VaR;ll(Xl) + VaRZz(Xz))_a+1
- VaRg, (X1) VaRg, (X2)\_q
(14 P00 ¢ Vgl
VaR, (X VaR,, (X
= VaR(Xy) + 22 (14 V() | VollelRe),

Finally, if X ~ M Pareto® (o, a), the MTCE can be represented as
2
VaR, (X;
MTCE,(X) = E(X|X > VaRq(X)) = VaRy(X) + p(1+ Y -~ qz.( )),

o
i=1 ¢
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where,

VaRg(X) = (VaR,, (X1), VaR,,(Xy))"
VaR, (X;) = 2= (a((1 = q) /" = 1) + 1)3i = 1,2

)

01 02

_ T _
IJ’_(/“L].J/“LZ) (a_l’a_l
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3.4 MTCE for multivariate Pareto type Il
distribution
In this section we will discuss a multivariatre Pareto type II distribution, and

express the multivariate tail conditional expectation (MTCE) measure for it,
under the assumption of different quantiles for the different risks.

Theorem 3.4.1. Let X = (Xy, ..., X,,)T is nx I vector with a Pareto distri-
bution, X~ Pareto™ (o, ) where o=(0y,09,...,0,)T, the multivariate tail
conditional expectation(MTCE) can be defined as

VaRq]

MTCE4(X) = VaRg(X) + (1 + Z (3.3)

where,

B = (:ulv M2, ..ey Mn)T7
VaRy(X) = (VaR, (X1),VaRy,(Xs), ..., Vaan(Xn))T.

Proof. The density function for multivariate Pareto type II distribution is

given by
= (=1 —— X
x(@) = (1) dry...dx,
ala+1)(a+2)...(a+n—1) TN
_ 1+ )y, 3.4
0109 ...0p ( jz_;aj) ( )
Where,

MTCEHX)=E(X|X >VaRy(X))
= E(X|X1 > VaR,(X1), X2 > VaR,(Xs),...,X,, > VaR,,(X,))
fVaR ) fx(x)dz
FX(a’q)
and the survival function is given by

Z VaRq] _a.

) 0<q177Qn<1
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We calculate n integrals of

Ii == /Oo xifx(X)dX.

VaRq(X)

Denote by ¢ the density function constant
ala+ 1) (a+2)...(a+n—1)

0102 ...0p
Thus,
[e.e] [e.e] [e.e] T
I; :/ v; fx (x)dx :C/ / 1+Z 5T,
VaRq(X) VaRq, | _;(Xn-1,-i) / VaRg, (X. ) i—1 Ji
where,

qn—l,—i = (ql, ey i, Qi—i—ly ceey qn)T a,nd Xn—l,—i = (Xl, Ce :Xi—b Xi—l—l: e ,Xn)T.

By using integration by parts, we get that

I :c/oo ([ 0;%; (1+Zﬁ)—a—n+l]oo
i VaRq, | ,(Xp_1,4) —Q— N+ 1 ~ o VaRg,(X;)

1
—L / (1 + Z ﬁ)_a_n—i_ldiﬂi)dxn_l’_i

_Oé—n+1 Vaqu(Xi) =1 0]

_y / N (T8 (143 et
Vaan,L,i(anl,fi) —— "N + 1 = O'-7 a qi( z)

O-'L - :I; j ——nNn o0
—[ o (1+ Z U_J) +2]Vaqu(X¢))an—1,—i
j=1 "7

[ (2 Vo, ()1 + Ly 57 5o

Vaan_l,_i(Xn—l,—i) Q + n-— 1 Ui j;él

o? VaR, (X;) T
i 1 ai ¢ I y—a—n+2 L
P |y UL B o)

2'751
after doing (n-1) more integrals, we get that

VaR,
VaR, (X 1+Z . Somntn

0102 ...0p
(a+n—1)(a+n—-2)...(a+n—n)

01'201 -+ 010441 -..0n (1 i Z Vaqu (Xj))—a—n+(n+1))

+(a+n—1)(a+n—2)...(a—|—n—(n+1))

Ii:C(

0’ .
j=1 J
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 VaR, (X Z VaR,, Z VaRy,(X;). _, 1

Therefore, the i-th component of the vector MT'CE4(X) is given by

VaRq] i) VoLRqJ (X)\—a
VaR, (Xi)(1+ 325, — ) (1+Zj1 =)t
VaRq](X)
VaR
= VaR, (X)) + Z VaRy(X;)

So, for all j€ 1,2,....,n the (MTCE(X)), is defined as

VaR,
(MTCE(X)); = VaRy (X;) + 1, 1+Z ¢ (3.5)

j=1..n

MTCE(X) = VaRg(X) + (1 + zn: VaRy(Xy),

0' .
j=1 J
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3.5 Capital allocation for multivariate Pareto
type II distribution

Let X = (X1, ..., X,,)T be the portfolio of Pareto risks, such that
X; ~ Pareto(a,0;),i =1, ...,n.
Define by S a sum of risks
S=X1+Xo+ ..+ X, =) X,
i=1
The allocation for risk capital is defined as
p(S) = E(S|IX > Vakq(X)),
we get that
p(S) = E(S|X > VaRg(X)) = E(>_ Xi|X > VaRg(X))
i=1

— zn: E(X;|X > VaRq(X)),

=1
where,
" VaR,, (X;
p(X,) = B(XIX > VaRy(X)) = VaR, (x) + (1 + 3 V) 5oy oy
i=1 g

Thus, by using Theorem [3.4.1], we can see that

p(S) = Z p(Xi) =) MTCE, (X)) (3.7)

=1
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3.6 Multivariate tail covariance (MTCov) for
multivariate Pareto type II distribution

In this section we will focusing on a multivariate tail covariance (MTCov)
measure, which is a matrix-valued risk measure designed to explore the tail
dispersion of multivariate loss distributions. The MTCov is the second mul-
tivariate tail conditional moment around the MTCE (multivariate tail con-
ditional expectation). The multivariate tail covariance is considered by

MTCovg(X) = E((X — MTCE4(X))(X — MTCEL(X))"|X > VaRy(X)).
(3.8)

We call this matrix the Multivariate Tail Covariance matrix, given

X > VaRg(X).

3.6.1 Main properties of the MTCov measure
The MTCov risk measure has the following properties :

1. For any nx 1 random vector of risks X and positive constant A\, we
have

MTCovq(AX) = X2MTCovg(X).

2. For any X and any vector of constants o € R"
MTCovy(X 4+ o) = MTCovy(X).

This means that for a fixed amount of known loss « the dispersion of
the total risk X+a is the same as the dispersion.

3. If the vector of risks X has independent components, then

MTCovy(X) = diag(TVy, (X1), TV, (Xs), ..., TV, (X))
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3.7 MTCov of bivariate Pareto type 1I distri-
bution

Denote,

Z VCLRqZ

Lemma 3.7.1. Let X = (X1, Xy)" ~ MPareto® (o, o) with survival func-
tion denoted by Fx(x; o, 0), o = (01,03), the multivariate tail covariance
matriz (MTCov) is given by

2
Jix 0102

MTCovy(X) =V x (@-1)*(e-2) (a=1)2(a-2)
0102 0'2(1
(e—1)2(a—2) (a—1)2(a—2)

Proof. Denote a multivariate tail covariance matrix by A

A = MTCovg(X) = E(X = MTCE(X))(X — MTCE(X))"|X > VaRy(X)).
(3.9)

Denote each of the diagonal elements in the multivariate tail covariance ma-
trix by A;;, we get

Ay = Var(Xi|X > VaRy(X)) = E(X?|X > VaRy (X)) — E*(Xi|X > VaRy(X)),i = 1,2.
(3.10)

The second part of the equation above is basically equal to (MTCE4(X));
(see eq3.5)), so we will focus only on the first part of the last equation for i=1.

Denote

K = B(X}|X > VaRq(X)).
Then,

fVaR l'le )dX
Vaqu( ) _|_VaRq2(X2))—a

02

K = B(X7|X > VaRy(X)) = (3.11)

(1+
Denote by ¢ the density function constant.

1
L _ala+1)

0102
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and denote by £” the numerator of £/,

" / Oo > 2 T L2\ a2
k' =c¢ 1'1(1 +— + —) dl‘ldl'g
VaRg,(X2) JVaRg, (X1) o1 02

o .’L'20'1 T T2\ _a—1100
R N R R P

VaRq2(X2) —Q — 1 01 09
20 > x x
- ! / .Tl(]. + = + _2)_a_1dl'1)dl'2
—a—1 VaRg, (X1) 01 09
= /00 VaR? (X)) % (1+ Vaky, (X) + ﬁ)_o‘_1
VaRg, (X2) “ a+1 o1 [op)
201 .07 T1  To. o2 Tl T g
_ 1 L Tay—ajoo I I S 1 oL Tay—at+1ljoo d
P 1([ " (1+ o + 02) [Var, (x1) [—Oz(—oz-l- 1)( + o T ) VR, (x1))dx2

o VaR, (X
= c'/ VaRg1 (X4) L (1+ Al (X1) + E)_a_l
VaRg, (X2) a+1 o1 o)

%Va’qu(Xl) (1 + VaRth (Xl) + ﬁ)—a
ala+1) o1 o)
2073 (1+ VaRg (X1) L

e —a+1d
et Da=1) o ) e

0109 VaRzl (Xl)(l i Vaqu(Xl) 4 T9

_Od(a _|_ 1) 0_1 0__2) ]VaRq2(X2)

2
0102 Va‘R(h (Xl) L2\ _a+1700
14 a2 2
ala+1)(—a+1) (1+ o1 * 02) War,, x2
ooy N VaR, (X1) Lo

+[2a(04 +1)(a—=1)(—a+2) S ot 02)—0‘”]%%(){2)),

=(

+2VaR, (X1)

Thus,

k,//
(1+ VaRg, (X1) n VaRq2(X2))_a

o1 g2

K =
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2 VaR 1 X VaR 2 X
:vaRgl(X1)+vaqu(x1)(a ill)(1+ a ;1( Y, Ve ;2( 2)y
207 VaR, (X1)  VaR,(X2),,
1
+(a_1)(a_2)( )

by using eq.(3.5)), we get that

A = Var(X1|X > VaRy(X)) = E(X{|X > VaRy(X)) — B*(X,|X > VaR,(X))

o 91 VaRth(Xl) VaR(p(X?) 2

= K VaRy () + =7 (14 ) Vella(Ra)),

202 VaR, (X)) VaR,(Xs) o2 VaR, (X)) VaR,(Xs)
_ 1 q1 q2 2 1 1 a1 q2 2
a9 T tT o Vet T, T )

2

B aoy VaRy, (X1)  VaR,(X2).,
N (a—l)Q(a—Q)(1+ o1 * 09 )"

In the same way, we get that

aos VaR, (X1) N VaR,(Xs)

Az = (a—1)2(a—2) (1+ o1 o9

)%

Now, we will express the off-diagonal elements of the MTCov matrix.

A12 = A21 = CO’U(Xl,X2|X > VCLRq(X))

= B(X,1Xa|X > VaRy(X)) — E(X1|X > VaRy(X))E(X2|X > VaRy(X)).

Let’s focus on the first part of the last equation above. Denote by u' and u”
the following expressions

f‘:Rq(X) 1179 fx (X)dx

u = (1 N VaRg_ll(Xl) + VaRgz(Xz))_a
o
u' = / 122 fx (X)dx,
VaRq(X)
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then,

W = c// (/ z122(1 + X1 + @)—a—zdxldm2

VaRg,(X2) JVaRg, (X1) oz 09

00 0 . .
— C’/ ,CEQ/ ajl(]_ + —_— + _)—Q—del)de
VaRg,(X2) VaRg, (X1) oy 09

[ee]
VaRg, (X2) 2([—C¥ - 1( o1 0-2) ]Vaqu (X1)

O-% T i)

e o o) e

- C// zaVaRy, (X1) L (1+ ValRy, (Xy) + ﬂ)—a—l
VaRg,(X2) a+1 o4 o9

2
X
Zo07 (1+VCLRq1( 1) +ﬁ)_°‘da:2

ala+1) o o

To02 VaR, (X1) w2,

1 L2\ —aj00

o+ 1[ —Q (1+ o + 02) ]Vaqu(XQ)
1

)—Oé-i-l

-2
—a(—a+1) [+
2

o X202 VaR, (X1) | T2\ _ai1100

—a+1 (1+ = + 0—2) [VaRa, (X2)

o3 VaRy, (X)) | =

_(—a F1)(—a+2) o1 0__2)_a+2]$/oaRq2(X2)))

](‘>/OaRq2 (Xz)

0109

(1 -+ Vaqu (Xl) + VaRth (X2)

2
0103 VaR, (X,)  VaR,(Xs)
ala—1)(a+ 1)Vaqu (X + o1 + -

727

172 V Z[‘RlJl(‘il) [/aqu(Xg)
aR, (X5)(1+

Oé(Oz + 1)(a — 1) Q2( 2)( ) —+ 5

o3 (1+ VaR, (X7) N VaR,(X3)

+a(a+1)(a— D(a—2) o1 p

= (VaR, (X1)VaRy,(Xs) -

)—a—i—l

)—a+1

)—a+2)'
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So,

"
’ u

u = (1 + Vaqu(Xl) + Vaqu(Xz))_a

o1 o2

g2

VaRQ1 (Xl) + Vaqu (XZ)

= VaR,, (X1)VaR,(X2) + ValRy, (X1) (1+ )
a—1 o 02
VaR, (X VaR,, (X
—|—VaRq2(X2) 01 (1 + a 41( 1) + a th( 2))
a—1 01 09
0109 V(Lqu(Xl) VaRq2(X2) 2
1 .
B VT L H
We conclude that
0109 VaR, (X1) VaR,(Xs)
A — 1 q1 q2 2‘
R P Ty
Finally,
‘7%0‘ g102
A= MTCovg(X) =V x |(@-V*a=2) {a=1){a=2)
q o109 o5 .
(a=1)2(a=2) (a—1)%(a-2)
O
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3.8 MTCov for multivariate Pareto type 11
distribution

In this section we will show a multivariate tail covariance matrix for multi-
variate pareto type II distribution.

Denote,

§ QJ x]

=1 .7

Theorem 3.8.1. Let X = (X1, ..., X,,))T be a vector with a Pareto distribu-
tion, X ~ Pareto™ (a, o) where o = (01,09, ...,0,)T, the multivariate tail
covariance matriz given X > VaR,(X) is given by:

2

g __910n
(a=1)?(a=2) """ (a=1)*(a=2)
i S A
MTCovy(X) =V s | @7V em 7 (emlr . (3.12)
J10n ' U%a
(a=1)2(a=2) " (a—1)2(a—2)

Denote the multivariate tail covariance matrix by A,

A = MTCovy(X),

here,
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Proof.

= B(X}X > VaR4(X)) — E*(X;|X > VaR4(X)). (3.13)

The second part of the eq.(3.13]) can be taken from the MTCE vector (see
3.5). Then we will focus on the first part of the last equation.

Denote,

kx = B(X?|X > VaRqe(X))

Koss— / / 22 fx (x)dx.
VaRa, _; _(Xn-1,-i) J VaRg, (X))

We will focus on calculating k *

K**:c/oo ([L(l_'_zn:ﬁ)—a—n—kl]%o]% .
VaRq, 4 ,L(Xn 1,—i) —Oé—TL—|—1 = . a qi( i)

_ —1,— -1 UJ
20; ° "z
— . z;(1+ Iy—a=ntlge Vdx, 1
—CM—’TL+1/Vaqu(X1) i ;UJ) i),
= ; VaR, (X; .
:c/ % yarz (x)(1+ L) T
VaRq, | ,(Xp_1_y) @+ n—1 of

VaRy, (X:) oy
= C/OO (LVaRg_(Xi)(l + Val, (Xi) (i) + Z ﬁ)—a—nﬂ
VaRq, | _,(Xp_1,-) @ TN~ 1 ' o ey
VR (X) e 1‘)’22& el VaR;Z (X)) ; % -
2 (a+n—1)(« —l—aj— 2)(a+n—3) (1+ VaR;Z(Xi) + ; i_j)_a_nJrg)an—l,—i
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_ C/Oo VaRgl (X’L)O-zo-k (1 + Vaqu (X’L) n Z ﬁ)—a—n—f—Z
VaRq, 5 _ ;1) Xn-2,~(i.k)) (a+n—1)(-a—n+2) gi

a"
g#i Y
20; VaR, (X;)o; VaR, (X; i\ on
4 g ( aRq,(Xi)oioy, (1+ aRy,( )+ ﬂ) +3
a+n—1"(a+n—2)(—a—n+3) o el
olo; VaR, (X) T
7 1 qi 7 ) \—a—n+4\]oo d e (i
+(az-l—n—2)(04—1—71—3)(—&—n—i—4)( + o; ;oj) )]V“qu(xk)) Kn—2,~(i:k)
o (X X ;
—f (varz () (1 + LX) | Vola(Ke) | 5= 2y anio
VaRq, 5 _;r (Xn—2,~(i.k)) Ti Tk ik 9j
2 VaR, (X;) VaR, (X i\ — e
+ Oi V&qu(X)( a (Iz( ) + a Qk( k) + Z ﬁ) a—n+3
(a+n—3) g o ol
202 VaR, (X;) VaR, (Xk) T
i 1 qi 2 dk “I\—a—n+4 d e — (i K-
+(a—|—n—3)(a+n—4)( " o " Ok +]¢Z¢:kaj) V=2~
In the n-th integral we will get
" VaR, (X;)
koox = o(VaR2 (X 102 - On 1 Sy
#x = cVaky,( )(a+n—1)(a+n—2)...a( +Z g, )
]:1
020y...0 VaRq
2 7 n V TGN y—a+l
P - Detn—2 a@a_1" HalX 2_:
odoy...o
2 7 n —a+2
i (a+n—1D(a+n—-2)...a(a—1)(«a 2:: )

" VaR (X) 20 " VaR (X)
VR (X Valty, (X)) o | _20i . — )"
— VaR2 (X)(1 +; L) VR, (X1 + ; ro—

202 u VaRy, (X;) I
e ettt

j=1 J

So,

kx = VaR2 (X;) +

(3.14)

j=1 J
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From eq.(3.5)) and eq.(3.14) follows that

Ay = E(X2|X > VaRy(X)) — E*(X;|X > VaRg(X))

=k x —((MTCE (X)):)?
ol VaR, (X;) ,
— 1 1 3
@ 1a=2)' *Z R
Finally, for all i€ 1,2,...,n , the following equation exists

Ay = E(XZ|X > VaRy(X)) — E*(Xi|X > VaRq(X))

ola " VaR, (X;)
= : 1+, ———) (3.15)
(= 1)*(a = 2) ; 7
1e€1,2,...,n

Now, we will express A;p
A, = Cov(X;, Xi|X > VaRy(X))
= E(X; XX > VaRq(X)) — E(X;|X > VaRg(X))E(Xi|X > VaR(X)).
(3.16)

The second part of the eq.(3.16) can be taken from the MTCE vector (T heorem3.4.1)),
then we will focus on the first part of the last equation.

Denote,
ux = E(X; XX > VaRq(X)).
u**:/oo /00 virgfx(x)dry ... dx,.
VaRg, (X») VaRg, (X1)
So,

0o e n .
u**:c/ / iw (1 + E &)_a_”dxl...dxn

a"

j=1 "7

VaR,, (Xn) VaRg, (X1)
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o[ il 20 (430 D
VaRq, , _,(Xn_1,-1) —a—n+1 “~ o aRq; (Xi)

o > “xi
— T / (1 + _j) @ n+1d$i)dxn_17_i
—a—n+1 VaRg (X;) ; 0j

o i VaR, (X; o
= C/ (kaaqu(Xl)L(l + L() + Z &) a—n+1
Vaan_l’_i(Xn_L_i) (07 + n — 1 O-'l ]?él O'j
oy, VaR, (X;) T
) 1 ai ¢ I \—a—n+2 d 1 i
+(a—|—n—1)(a+n—2)( * g +;Uj) J -1,
e oVaR,(X;) kT VaR, (X;) i\ o900
B C/ (a—i—nq— 1) —a—n+2(1+ q. +Z_J) +2]Vaqu(Xk)
Vaanfgyf(i’k) (Xn72,7(i,k)) i jF#i U]
o101V aRy, (X;) VaR,, (X;) Lj\—a-n+3
- (1 +) )
(a+n—-1)(—a—n+2)(—a—n+3) o 1
o? O)Tg VaR, (X;) xj
2 1 qi L4 “J y—a—n+3]00
+(a—|—n—1)(a—|—n—2)[—a—n+3( - o +;Uj) ]V“qu(xk)
oo} VaR, (X;) xj
‘ 1 4qi v I \—a—n+4 d 2 — (i
+(Oz—l—n—1)(a+n—2)(—04—n—i—i’»)(—a—n+4)( - o +; ]) =2,
c/oo Cin'kVaqu (Xi)Vaqu (Xk) (1 Z i + ﬁ)—a—n+2
Vaan72,*(i,k) (Xn72,7(i,k)) (a +n- 1)(a +n - 2) j=i.k J j#ik J
2
oiopVaR, (X;) T, Tj\—a—n+3
+ : 1+> =+ > —)
(a+n—1)(a+n—-2)(a+n—3) Jzz:k ; #zi;k ;
ooy VaR,, (X) T xj
+ [ k 1+ =7 + I \y—a—n+3
(a+n—1)(a—|—n—2)(a—|—n—3)( Jz:kaj #zi:kaj)
2 2

0; 0y

ZT; ZT;
1 ') _J—a—n+4d (i)
+(Od+n—1)(a+n—2)(a—|—n—3)(a—|—n—4)( +J;co-j+j¢zijko-j) )X Bl
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In the n-th integral we will get

0103 ...0y " VaR, (X;) _
= ; Xz X 1 J «
2
0i0% [ 211 7 VaR ;
VaR,,(X; J —a+1
070k L4k % " VaR,(X)
V R X JFik 7 J 1 q; —a+1
+VaRy,( k)(a+n—1)(a+n_2) (a—1)( +J:1—Uj )"
4 o;o} Hj;éikaj zn: —
(a+n—1)(a+n—2)...ala—1)(o -
Finally,
" VaR,, (X,
u*:Vaqu(Xi)Vaqu(Xk)+VaRqZ(X-)aUk1(1_|_ alty, ( .7))
_ o
Jj=1 J
ag; - VaRq](X]) 0,0 n
+Vaqu(Xk)a — 1(1 - ]z:; o) )+ @ —1) Z:

We obtain from eq.(3.17) and eq.(3.0) the following expression for Ay,

A = u —(MTCE4(X ))'(MTC’E( ))
VaR,,
:(a—l) a—2 Z

Finally, for all i, k € 1,2,...,n , the following equation exists

A = E(X; XX > VaRg(X)) — E(X;|X > VaRy(X))E(Xi|X > VaRg(X))

B (a—1)2(a_2)(1+; o; ), (3.17)

where i #k; i,k€el,2,....n
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3.9 MTCorr for multivariate Pareto distribu-
tion

The correlation between each two variables must be expressed by using the
most familiar measure of dependence between two quantities is the Pearson
product-moment correlation coefficient, or ” Pearson’s correlation coefficient” .
It is obtained by dividing the covariance of the two variables by the product
of their standard deviations.

MTCovg(X)

MTC X)ix = _
orra( X (\/MTCovq(X)ii\/MTCovq(X)kk ’

From well-known Cauchy-Schwartz inequality it may be easily shown that
for elements of this matrix the following inequality holds

MTCovg(X)
<1
VMTCovg(X)ii/ MTCovg(X)k

—1 < pix =

Thus, in this section we will present the tail correlation matrix for multivari-
ate Pareto distribution.

Theorem 3.9.1. Let X = (X1, ..., X,,)T be a vector with a Pareto distribu-
tion, X ~ Pareto™ (o, @), where 0 = (01,09, ...,0,)", the multivariate tail
correlation matriz, given X > VaR,(X) is given by

1 L1
MTCorr=|: .. + |. (3.18)
11 1
Proof. By using Theorem ((3.8.1)), we will get
A 1

PXi, X = —,A—“ ,A—kk = o

for i#k i,k=1,2, ... n.

Finally,
1 1 1
MTCorr =
1 1 1
|
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3.10 Numerical illustration

The suggested formulas above can easily be evaluated in any computer pro-
gram environment. We included 3 examples of MTCE, MTCov and MTCorr
for 5 business lines having multivariate dependent Pareto distribution type
IT, with n=10000 observations everyone, performed in R Studio environment.

Example 1. Let X = (X1, Xo, ..., X5)T ~ Pareto®(a, o), with the following
parameters: a = 2.1, o = (2.1,2.5,2.8,3.5,5)T and g = (0.95,0.95,0.97,0.96,0.94)7.
By using eq., we obtained

MTCE,(X) = (32.84719, 35.88925, 39.59785, 45.81910, 61.51359) ",

also by using eq. and , we obtained

12381.845
7019.187
7861.489
9826.861

14038.373

MTCov =

7019.187
17547.966
9358.915
11698.644
16712.349

and by using eq. , we got

1
0.4761905
0.4761905
0.4761905
0.4761905

MTCorr =

0.4761905
1
0.4761905
0.4761905
0.4761905

7861.489
9358.915
22012.169
13102.482
18717.831

0.4761905
0.4761905
1
0.4761905
0.4761905

9826.861
11698.644
13102.482
34394.014
23397.289

0.4761905
0.4761905
0.4761905
1
0.4761905

14038.37
16712.35
18717.83
23397.29
70191.87

0.4761905

0.4761905

0.4761905

0.4761905
1

also by using eq.. we obtained that p(s) = 215.667, we can see there is a
positive relationship between the risk’s contribution to the capital allocation
and the scale parameter.

Example 2. Let X = (X1, Xo, ..., X5)T ~ Pareto® (a = 3,0), o is given in
the previous example, and by using the same equations, we got,

MTCE = (30.86475, 32.15155, 35.15528, 38.68951, 49.63893) ",

and the MTCov is equal to

1041.0800 413.1270  462.7022  578.3778  826.2540
413.1270  1475.4535 550.8360  688.5450  983.6357
MTCov= | 462.7022 550.8360 1850.8089 771.1704 1101.6720] ,
o78.3778  688.5450  771.1704 2891.8889 1377.0900
826.2540  983.6357 1101.6720 1377.0900 5901.8142
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also we obtained the MTCorr matrix which given by

1 0333 0.333 0.333 0.333
0333 1 0333 0.333 0.333
MTCorr= (0333 0333 1 0.333 0.333],
0.333 0.333 0333 1  0.333
0.333 0.333 0.333 0.333 1

and by using eq. we obtained that p(s)=186.5. In comparison with the
first example, using the same scale parameters with o = 3, we got that all the
tail measures received more lower values than the values they were received
before.

Example 3. Let X = (X1, Xs,..., X5)T ~ Pareto®(a, o), where, a = 3,
o= (2.5,2.8,3,4,5.8)T, by using the same equations above, we got,

MTCE = (26.95933,28.02023, 30.12699, 34.29942, 44.76377)",
and the MTCov is equal to

886.2685 330.8736  354.5074  472.6765 685.3809
330.8736 1111.7352 397.0483  529.3977  T67.6267
MTCov= [354.5074 397.0483 1276.2266 567.2118  822.4571
472.6765 529.3977  567.2118 2268.8473 1096.6095
685.3809 767.6267  822.4571 1096.6095 4770.2514

The MTCorr is given by

10333 0.333 0.333 0.333
0333 1 0333 0.333 0.333
MTCorr= 10.333 0333 1 0.333 0.333],
0.333 0.333 0333 1  0.333
0.333 0.333 0.333 0333 1

and by using eq,, we got that the allocation is equal to 186.5.

Then, after increasing the values of all the scale parameters, with a = 3,
all the tail measures received more lower values than the values they re-
ceived in the previous example, except, the MTCorr which only depends on
the shape parameter value, then, we got the same MTCorr matrix in the last
two examples.
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Example 4. Let X = (X1, Xy, ..., X5)7 ~ Pareto®(a, o), where, a = 4,
o= (23,2.1,4,8,7)T, by using the same equations above, we got,

MTCE = (29.17432,30.17465, 35.12573, 57.28006, 50.84514)"

and the MTCov is equal to

434.34594  99.14418  188.8461 377.6921  330.4806
99.14418  362.09180 172.4247  344.8493 301.7432
MTCov = |188.84606 172.42467 1313.7117 656.8559  574.7489
377.69212 344.84933 656.8559 5254.8470 1149.4978
330.48061 301.74316 574.7489 1149.4978 4023.2422

The MTCorr is given by

1025 025 025 0.25
025 1 025 025 0.25
MTCorr= 10.25 00.25 1 0.25 0.25],
0.25 025 025 1 0.25
0.25 0.25 025 025 1

and by using eq. , we got that the allocation is equal to 202.6 .

The figures on the next pages describe the allocation for the 4 examples,
respectively. The X axis has the five risks, and the Y axis has the contribution
of each of the risks to the total allocation (in percent).
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Chapter 4

Multivariate flexible Pareto
model

Multivariate Pareto type II distribution has a crucial disadvantage: any uni-
variate marginal distribution has the same shape parameter, which means
that they have the same distribution up to a scaling parameter. However,
it is difficult to believe that all risk components of some system have the
same rate of decrease of the tail distribution for large risks. Moreover, the
dependence structure of multivariate Pareto is quite poor, because it allows
only equal correlations for each couple of risks. Besides, the independent uni-
variate Pareto marginals do not belong to the multivariate family. In what
follows, Arthur Chiragiev and Zinoviy Landsman suggest two new multivari-
ate versions of Pareto distribution, whose univariate marginals are Pareto,
but with different shape parameters. They also have a lucratively richer
dependence structure, i.e., a flexible one. The first model, which is called
Multivariate Flexible Pareto type I (MFP(I)), is the distribution where the
power parameters of marginals do not depend on the order of the compo-
nents included in the model. For the second one, called Multivariate Flexible
Pareto type II (MFP(II)), the power parameters are already dependent on
the order of their marginals. Therefore, the first model might be considered
more attractive; for the second, some important dependence attributes can
be calculated in a simpler form. Both models are introduced by the mixture
of independent multivariate exponential distributions with respect to their
rates.

46

www.manaraa.com



4.1 Flexible distribution type I

4.1.1 Tail distribution and density functions

Notice that Arnold’s distribution (3.1)) can be obtained as

Fx(x,0,0a) = Eg(exp(— E/\)) x; >04=12..n, (4.1)

i=1 !

where F¢(.) is the expectation with respect to the Gamma distributed mix-
ture parameter, such that

A~ G(a,1).

Chiragev and Landsman in there article ” Multivariate flexible Pareto model,
(2009)”, weaken the dependency structure of the multivariate mixture pa-
rameter

A — ()\1, ceey )\n) y

used for definition of (4.1). They denote \; = Yy + Y, where

Y~ Gy, 1), i=0,1,..,n. (4.2)

Then it follows that
/\zNG<’)/0+’)/Z,1), i:1,2,...,n.

This approach can be considered as an evaluation of the Marshall and Olkin
(1988) principle for the Mathai and Moshopoulos (1991) multivariate gamma
(MG) dependence structure.

Construction (4.1))-(4.2)) results in an essentially more flexible multivariate
Pareto distribution. Chiragev and Landsman call a distribution

n

Fx(x,0.a) = Eycleap(— S 2N))  2,20,i=1,2,...n  (4.3)

i=1 "

multivariate flexible Pareto type I (MFP(I)) distribution, where o = (074, ..., 0,,)
are the scale parameters and o; = v+, ©t=1,2,...,n,
are the shape parameters.

4.2 Flexible distribution type II

In what follows, Chiragiev and Landsman(2009) used another dependence
structure, also referred to by Mathai and Moshopoulos (1991).
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4.2.1 Tail distribution function

Recall that Y7, ..., Y, are independent gamma distributed random variables,
as in (4.2]). Denote

N=Yi+..+Y, €]l ..n]. (4.4)
For the case of X = (X3, ..., X,,), the MFP(II) tail distribution function is

Fx(x,0,v) H (1+ Z ? (4.5)

and we write X ~ M FP(I]),(o,v), where v = (14, ..., 1), with

7

vi=Y 7, i=12..n (4.6)

J=1

The MFP(II) density function has the form

- Tk T (1 — . T F(V V'1+i')
x(x,0,v) = T+ =2 )y~ N gy, J I
EFVk_Vkl k( () a‘n) z]ze; (1 )H(l—l— _|_ +xn),

where a(iy, ..., 1), ij, and I is considered by

iy +y2)-- (1 + -+ yn) = Z afiy, ..., H?JJ ; (4.8)

ijel

where I is some set of indexes i;, j=1,2,...,n, such that
n
> ij=mn
j=1

and a(iy, ..., 4,),1; € I, are the appropriate constants.

The expectation of X;, i=1,2,...,n, is as follows

and the variance of X; can be derived as

I/'L'O'Z-2

(vi = 1)2(vi — 2)°

V(X;) =

v >2,10=1,2,...n
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where v; is as in (4.6). The covariance between X; and X, 1< i < k < n,
has the form

00k

(vi — V(v — D) — 2)’

Thus, the correlation coefficient is

Cov(X;, Xy) = v; > 1,10, > 2.

(vi —2)

— ; > 2.
Vz'Vk:(Vk _ 2) ) Vi, Vi

PX;, X, =

4.3 MTCE of bivariate flexible Pareto type
11

Consider the bivariate flexible Pareto type II distribution
X =(X1,Xs) ~MFP(I)y(o,v),
where
o= (01,02) and v = (v,1s)
The MTCE is defined by

f;: zfx(x)dz

MTCE,(X) = B(X[X > VaRy(X)) = = o

Then,
E(Xi1|X > VaRy(X)) =

[e¢) 0 2 o) o 2
/ / H fvi(yi) / / Z1 H Ixava v (@il Y2 = yo, Y1 = y1)dardaadyidys.
y2=0 Jy1=0

Py X2=VaRg,(X2) J X1=VaRg, (X1) ;.

By use integration by parts, we get

B(X)[X > VaRy(X)) = / OO / OOHfY@/)

X / fX2|Y2,Y1('772|Y’2 = Y2, Y, = yl)
Xo=VaRg,(X2)
My o Ay
x([—zie ™ " Var,, (x0) — / —e 71 ey )draydydy
VaRg, (X1)
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/yz =0 /y1 =0,

e’} —A1VaRqq (X7) Mz
x/ (VaR, (Xi)e 7 _[A_e o ]Vaqu(X1))
Xa=VaRg,(X2) 1

XfX2|Y2,Y1 (552|Y2 =1y, Y = yl)diﬂzdyldyz

:/y:O/y:O,LljlfY(y)

00 Y Y Ao =X
X / (VaR,, (Xl)e#VGqu ) 4 %BTILV“R“ (Xl))—26722x2dx2dy1dy2
Xo=VaRg,(X2) 1 02

ZL:OLiOQfY(y)

x(VaRy, ()(1)6_%1“/“%1 R ﬂe%va% (Xl))e_?;zvaqu (Xz)d%dyz
1

by using eq.(4.2)), where
we get

B(X,|X > VaRy(X))

['(m)

we will use the complement to Gamma distribution.

_ VaRg, (Xa) oo mn=lo—y VaRgq, (X1) VaRq2(X2)
— 22, Y1 —( + Yy1 01
/ fyva(yp)e 2 / e @ o1 (VaRg, (X1) + —)dyrdys,,
Y2= y1=0 hn

Denote,
1= (14 V) | VaBy(Xa))
o1 02
So,
_mVern (e VaRy, (X)) | oul(n —1)
E(X1|X > VaRg( ql d
(X1 “ /2 Falw)e ( Im I(yp)im=t e
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_y2Valqy(Xa) Vaqu (Xl) o1
v d
/2 Falw)e 7 Im " (1 — 1)l“/1—1) b2
_ aqu(Xz
B /oo y’2)'2 1 (1+ )yz(Vaqu (Xl) N o )dy
= 2
y2=0 I'(72) Im (1 — it
after using a Gamma complement we got
VaR, (X;) o1
E(X1|X > VaR4(X)) = e +
aRq, (X2) _ VaRg, (X2)
(1 + PO, (14 VRO
Denote,
T — VaRg, (X1) o1
l’Yl(l + V“qu(X2)) (,)/1 _ 1)171—1(1 + V‘IRZ(X2))72
Then, by using eq.(4.5) we get
l VaRy (X VaR,, (X
BXi|X > VaRy(X)) = = = VaRy, (X1) + —2—(1 + -2 o (X1) + = »(X2)
Fx(x,0,v) m—1 o1 o)

Now, we will express the second component of the MTCE vector.

E(X5|X > VaRg( / / HfY Yi)
2=0 Jy1=0 ;

Y

o0 o0 2
X / / T2 H in|Y2,Y1 (ilfz|Yz =y, Y1 = yl)dx2d1'1dyldy2-

X1=VaRq, (X1) J X2=VaRgy(X2) 1

By using integration by parts, we get

BOGX > VaRyX) = [ [ T felo

X / fxivan (21|Y2 = 42, Y1 = 31)
XQZVaRq2 (X2)
Ao, o X2,
X([=22e 2 VR, (x2) _/ —e 72 Pdry)drydyrdy
VaRq2(X2)
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/;,2 O/yl OHfY yz

o9 Y Oo —A A =X
x / (VaR,,(Xp)e o Vi) g BtV elte 09 20w g dy,dy,
X1=VaRg, (X1) 2 01

/ / v, (i) (VaR, (X2) = Valn (%) + %e%zzva&m (X2))6_7AllvaR‘“(X1)dy1dyz.
y2=0 Jy1=0 ; 2

Denote,

A A
= / / v, (y1) (VaRg, (Xa)e™ ( 2VCqug(Xz)"‘—1VCLqu(Xl))dyldy2
y2=0 Jy1=0 ; 02 01

o A
I = / / 2]‘[ fy, (yi)e Vaqu(Xz)—i- 1VaRq1(X1))dy1dy2
y2=0Jy

10211

By using eq.(4.2)), where

N=Yi+..4+Y, di€ll,..n].

We get
o0 VaRgy (X2) oo o MTlo—yr VaRg (X1) Vaqu(XQ)
I = sz (y2)6 . " / yll“—e ( 71 * n VaR(m (XQ)dyl dy2
y2=0 y1=0 (71)
oo VaRg, (X2) 00 y’Y1—1e—y1 —( VaRgy (X1) n VaRq2(X2))
I = fva(y2)e 2/ e " ! ———dy,dy».
y2=0 ’ y1=0 ['(m) Y1 + Y2

By using the complement to Gamma distribution, we get,

00 | VaRgy (X3) oo M- VaRgy (X1) Vang(Xz)
I = fo(yp)e = " y/ ylr— e )ylvaRQZ(XQ)dyl
y2=0 y1=0 (71)
_ VaRgy(Xg) VaR (X2)
og —2y q2 d
/ . fra(y2)e (1+ VaR:;ll(Xl) N VaR;L;(XQ))% Y2
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— Vaqu (X2)
(1 —l— Vaqu (Xl) + VaRq2(X2) ),71(1 + VaRq2(X2) )72

o2 o2

In addition, we used Maple program in order to solve the I integral,

_ VaRgy(X2) oo M—lo—un VaRgq, (X1) VaRq2(X2) o
— =y, Y1 —( + )y 2
I = / fra(y2)e 72 dya / T T ¢ o dy
Yo = y1=0 71 W + Y2

\Z

oo _ aRgq (X9)
[ e
=0

VaRgqy (X1) VaRgqy (X9)

xygl_lr(’}’l)em(H o1 o3 )F(—’)/l +1, 312(1 +

VaR!h (Xl) + VaRtI2 (X2)

01 02

))-

The last integral we can not success to solve it by the different integral‘s
methods, it will be solved numerically in a future research.
Finally, we get that

I
E(Xy|X > VaRg(X)) = VaRy,(X,) 4+ =————.
FX(X7 g, ’/)
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Chapter 5

Conclusion

In this research we developed expressions for tail conditional expectation
(TCE) and tail variance (TV) for univariate Pareto type II distribution. Af-
ter that, we gave the definition and explanation of properties for multivariate
tail conditional expectation (MTCE) and developed expression for it.

Also we developed expression for the capital allocation based on it, in the
case of a multivariate Pareto type II distribution.

In addition, we developed expressions for multivariate tail covariance matrix
and multivariate tail correlation matrix (MTCov and MTCorr respectively).
Furthermore, we get that the dependence structure of multivariate Pareto
is quite poor, because it allows only equal correlations for each couple of
risks. This unrealistic result drew us to express the same risk measures:
MTCE, MTCov, MTCorr, for another distribution called ” Multivariate Flex-
ible Pareto”, in order to see if a different result would be obtained, that is,
whether the correlation is different between any two risks. Multivariate Flex-
ible Pareto type II (MFP(II)), the power parameters are already dependent
on the order of their marginals. In our thesis we did not success to got these
risk measures.

For future research, we suggest deriving these risk measures for multivariate
flexible Pareto distribution, introduced by Chiragiev and Landsman (2009).
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TPTHN 29109 MHDONN AR DY OMTHN 27 NI >TIN

1ON YONOD

8PN

97N NYAP NN .NYTNYD MYIND D52 Tinyd 1N NN NPVIAND YD MY MINIY NV NN
PIT NPNA DY WY TOONN DIV NN TIYNY MDMIN 1N, 10D . JNININ MIPdY 1Y INNN NANIN
VN PNY INNN NYIANN TN NN NIRNNDY NHDNDN NNDONN YW AN NPPN ,)IINRD I .NNIN)
N DY N0 YT WHNYND XX 23T NPPNA MININ .OXINNK DMDINS DN NV MIAN 1P
.DN0N 9N DT NIPONY NN, NNMN NNPN PON qUNINIY NDIDY NIANNY TOINN NN TIVND
.Value at Risk (VaR) n12191 17 709010 NNYONN Y PHINK YY DDA DY 99 DY 107y

29099 NMNHVANN NAY OMVYN NIYDN PTTN NIAY DMV KINND NINA NIND NINDNI,IINRIN NIND
NYMN MN2AY NV NRYN NONNNA .OINVPN HY THYYNN NTIAYA NWN T RNY 1T non mr1mn
M0 mnwn May (Tail Conditional Expectation) TCE 131915 1% nvmin , nnooninm 231 H¥ mmn
P oY NI NN L, X -2 1910010

TCEq(X) = E(X|X > Xg)

,INMDANTN 2T DY YINNN TTHN MINN RO TWRD 1291 TOANI MY NPT NDID 1T )10 NN
Xq NTIPII MTIYN NMIPND DV TIVN TWKI,TOINN MIDONN DV 297890 NHNKD 120 NIN NN
.0<q<19wND ,1-q -5 MV

MTCE ( Multivariate Tail X330 9101 59910 7710 NMI 1951 NINION NN ¥ 90 TT1HH
P2 MOND NN NAYNA NP DY 710 .(2016) 19070 > Dy axn W (Conditional Expectation
.DYTDON HY OPNNN OMINIA DXPDIY DX TYRD NIPHN XIN YN 00U DINUNIN

NN AN VI DNMSANNN DNDD 1 -1 257N NVPY MN2Y MTCE Sw %1031 nxsn 1NN nona
PNV NN NINA OIMNDDNN TAR DID 1D .0MY ONNMINX n -NAY NPNY MTCE 5w 1y minn nx

1 Yy 91 MTCE -n . 1=1,...,n 9WN> q; "MWV
MTCEq(X) = E (X|X > VaRq(X)) = E(X|X; > VaRg, (Xy), ..., Xn > VaRg_(Xn)),

0<q<li=1,..,n

MTCov N21910 MNSNNN 2% DY NNMNN NPNVN NXIVN NIY DMV NXYN ,TIY GONI

NN RV2Y 7O NYAPNNY NPNVN NIV NWHNYN .(Multivariate Tail Covariance matrix)
1O MXONPN N¥IVNA MTCorr (Multivariate Tail Correlation matrix) 1289970 N¥LVN
JPMNISND XD NI TIRDY NIRSIN ,DND0 1 DI P INY ORNHN DTPHY

DXNNNY N2 NINK NNDANN WAND TINY 2IWND 1D 1D7) TV NNDAND NIV DIAPNNY NINXIND
. Multivariate Flexible Pareto type II nXIp3w n1)99NN2 19N .0X122010 NHMND NNOND NP
2990 XN PNINAN NN NIND NINDNI NNINN XD AN DN NIP0N YTTND DV NINNDD 1D
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